22.08.2023

Блок питания: с регулировкой и без, лабораторный, импульсный, устройство, ремонт. Список элементов схемы регулируемого блока питания на LM317 Схема мощного регулируемого блока питания 0 30в


У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания . У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

Ну еще есть и самопальный блок питания:


Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:


Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

– выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

– можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

– очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

– защита от перегрузки и неправильного подключения

– на блоке питания путем короткого замыкания (КЗ) “крокодилов” устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):


Цифры в кружочках – это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
- 1 и 2 к трансформатору.
- 3 (+) и 4 (-) выход постоянного тока.
- 5, 10 и 12 на P1.
- 6, 11 и 13 на P2.
- 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост . Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

На восьмом выводе написано “NC”, что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А


Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!


Вот его распиновка:

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство – это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

У нас вот так:


Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K многооборотный подстроечный резистор
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ
C5 = 200нФ
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5401…1N5408
D5, D6 = 1N4148
D7, D8 = стабилитроны на 5,6V
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548 или BC547
Q2 = КТ961А
Q3 = BC557 или BC327
Q4 = КТ 827А
U1, U2, U3 = TL081, операционный усилитель
D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)


протравил


отмыл тонер


просверлил отверстия:


Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:


А вот так плата выглядит уже с полным монтажом:


Подготавливаем место под платку в нашем корпусе:


Приделываем к корпусу радиатор:


Не забываем про кулер, который будет охлаждать наши транзисторы:


Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?


Описание работы, печатку и список радиоэлементов я взял в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке


Мастер Куделя © 2013 Копирование материалов сайта разрешено только с указанием автора и прямой ссылки на сайт-источник

Блок питания 0-30В 10А

Этот довольно мощный блок питания выдаёт стабилизированное напряжение от 1 до 30 вольт при токе до 10 ампер.
В отличие от других БП, описанных на этом сайте, он обладает, кроме вольтметра, функцией измерения тока, что может быть применено, например, в гальванике.
На передней панели находятся (сверху вниз):
- зелёный светодиод включения БП;
- красный светодиод срабатывания защиты по току;
- головка измерения напряжения (верхняя шкала) и тока (нижняя шкала);
- слева от значка- переключатель индикации напряжения- тока;
- справа от значка- кнопка сброса защиты по току;
- регулятор выходного напряжения;
- клеммы подключения нагрузки.

Трансформатор должен иметь мощность от 300 Вт с напряжением на вторичке от 23 вольт переменки с выводом от средины вторички. Вывод нужен для реализации схемы защиты по току (внизу). На транзисторе Т1 собран ключ защиты. Падение напряжения на резисторе R2 приводит к открытию этого транзистора, срабатывает тиристорная оптопара АОУ103, срабатывает реле, контакты которого разрывают нагрузку на выходе БП и зажигают красный светодиод. После срабатывания защиты лучше сбросить переменником напряжение и кнопкой ПУСК вернуть блок в работу. Сам стабилизатор собран на стабилизаторе DA2 и двух мощных транзисторах VT3 и VT4, работающих в параллель.

Тут я привёл распальцовку:) кое каких активных элементов, чтобы вам не пришлось рыться в справочниках.
Не забудьте, на корпусе транзисторов 2N3055 находится коллектор, поэтому они должны быть изолированы от радиатора слюдяной или керамической прокладкой, смазанной кремнеорганической смазкой для теплопроводности.

Передняя панель с обратной стороны распаяна без каких либо сюрпризов. Схема с подстроечными резисторами для калибровки измеряемого тока и напряжения смонтирована прямо на выводах измерительной головки.

Вид на правую стенку изнутри.
Ближе к углу крепится реле. Типа реле не знаю, рабочее напряжение на обмотке 12 вольт постоянки, сопротивление обмотки 123 ом, ток 84 мА. Нормальнозамкнутые контакты коммутируют нагрузку, нормальноразомкнутые на сигнализацию срабатывания защиты (красный светодиод).
На переднем плане силовые транзисторы на медном радиаторе через керамические прокладки. Медь применена как отличный теплопроводящий материал, уступающий в этом отношении лишь серебру. Медный радиатор передаёт тепло дальше на дюралевый радиатор. Под транзисторами токовыравнивающие резисторы R9 и R10.
Под реле находится балластный резистор, падение напряжения на котором измерительная головка работает в режиме измерения тока. Конкретных цифр не буду приводить, всё зависит от того, какую головку найдёте. Скажу лишь как этот резистор можно изготовить. Во первых, сопротивление его по вашим рассчётам будет довольно мало, а во- вторых, его сопротивление должно быть довольно точным. Поэтому находим нихром. Не важно какого диаметра, ведь можно сыграть количеством проводов. Главное, нужно измерить его диаметр и по таблицам, которые я приводил , определяете его погонное сопротивление. Этого уже достаточно, чтобы по закону Ома высчитать длину и количество проволочек. Далее собираем проволочки в пучёк, засовываем в медные трубочки подходящего диаметра и сплющиваем их с соблюдением необходимой длины проволочек. Всё, балластник готов. Его можно припаивать к контактам.

Левая и задняя стенка.
Вверху левой стенки крепится печатная плата, на которой и находится вся мелочёвка. Схема печатной платы и её вид далее.
К самому радиатору левой стенки крепится силовая диодная сборка BB36931. Она работает до 80 вольт при токе до 10 ампер. Для качественного теплового контакта садим на кремнеорганическую мазь. Я использую для этого виксинт. Эта сборка хороша тем, что изолирующих прокладок не требуется.
На задней панели находятся предохранители и основной конденсатор. Конденсатор на всякий случай зашунтирован резистором.

Слева схема печатной платы со стороны навесных элементов. Справа с обратной стороны. Далее- уже виды вживую.

Расположение элементов внутреннего устройства блока питания не произвольно. Все они расположены таким образом, чтобы при сборке всех стенок вместе, они не мешали друг другу, а каждый выступ входил в соответствующее углубление. Что и видно на следующем фото.
Ну и, наконец, задняя стенка снаружи. Не мучайте себя напрасно, ведь зачастую при переноске шнурок болтается и мешает. Сделайте кронштейны для намотки провода и подберите его длину для наиболее удобной намотки. Не берите пример с заводских изделий. Ведь их делают не для людей, а для продажи. А вы всё же делаете для себя, любимого:)
К тому же на этих кронштейнах блок может работать лёжа на спине.

Приведена принципиальная схема простого в изготовлении стабилизированного и мощного блока питания с регулируемым выходным напряжением от 5В до 35В и током нагрузки 5А, 10А, 20А, 30А, 40А и более (в зависимости от количества микросхем).

Источник питания может обеспечить токи до 5А (одна микросхема), 10А(две микросхемы), 20А(4шт), 30А(6шт), 40А(8шт) и т.д. Напряжение можно регулировать, например можно выставить часто используемые напряжения 5В, 12В, 24В, 28В, 30В и другие.

Принципиальная схема

В основе блока питания лежат мощные интегральные стабилизаторы LM338, каждый из которых может обеспечить выходной ток до 5А при напряжении от 1,2 до 35В (данные из даташита).

Рис. 1. Принципиальная схема мощного блока питания на напряжение 5В-30В и ток 5А, 10А, 20А, 30А и более.

Вторичная обмотка силового трансформатора должна выдавать переменное напряжение со значением не менее 18-25В. Мощность трансформатора желательно выбрать с запасом, в зависимости от требуемого напряжения и тока на выходе будущего блока питания.

Детали

Транзистор BD140 нужно установить на небольшой радиатор. Все интегральные стабилизаторы LM338 должны быть установлены на отдельные радиаторы достаточной площади для надежного отвода тепла.

Рис. 2. Внешний вид мощных интегральных стабилизаторов LM338.

Рис. 3. Цоколевка (расположение выводов) у микросхем LM338.

Все мощные микросхемы можно установить на один общий радиатор через слюдяные прокладки, поскольку корпуса микросхем не должны соединяться вместе.

Ток выдаваемый на выходе блока питания может быть увеличен или уменьшен соответственно добавлением или уменьшением количества применяемых пар "стабилизатор LM338 + резистор Rx".

К радиатору можно применить активное охлаждение - установить небольшой вентилятор от компьютера, подав для него питание через стабилизатор на 5-12В (7805, 7812), это позволит уменьшить размеры радиатора и увеличить эффективность теплоотвода.

Диодный мост можно применить готовый на нужный ток, также его можно собрать из четырех отдельных мощных диодов (D1-D4). Эти диоды должны быть рассчитаны на ток, который планируется получить на выходе стабилизатора.

Рис. 4. Цоколевка транзистора BD140 (P-N-P).

Например, диодный мост из четырех выпрямительных диодов Д242 обеспечит рабочие токи до 10А. Диоды или диодный мост желательно установить на отдельный небольшой радиатор.

В качестве резисторов R3, R4...Rx можно установить керамические цементные или использовать проволочные, поскольку на каждом таком резисторе будет рассеиваться примерно 4-7 Ватт мощности (в зависимости от общей нагрузки на стабилизатор).

Печатная плата

Разводку печатной платы в формате Sprint Layout 6 нам прислал Александр. На ней отсутствует конденсатор С4 - его припаиваем к выводам переменного резистора R1, который будет крепиться на корпусе устройства и послужит для регулировки напряжения.

Рис. 4. Печатная плата для схемы мощного блока питания на микросхемах LM338.

  • PCB+High+power+regulater+0-30V+20A.jpg - печатная плата с зарубежного сайта, конденсатор 4700мкФ установлен на выходе стабилизатора.
  • lm338-power-supply-layout-v1 - первый вариант печатной платы: на входе и выходе стабилизатора установлены конденсаторы 4700мкФ (C1 и C6), защитный диод (D6) отсутствует. Мощные резисторы по 0,3 Ом.
  • lm338-power-supply-layout-v2 - конечный вариант печатной платы: на входе два конденсатора по 4700мкФ (C1), на выходе - 22мкФ (C6), установлен защитный диод D6. Мощные резисторы по 0,1 Ом.

Подготовлено для сайта сайт.

  • PCBWay - всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН
  • Сборка печатных плат от $88 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
  • Онлайн просмотрщик Gerber-файлов от PCBWay !

Комментарии (68):

#1 Александр Январь 25 2017

Скажите, а есть ли печатка для этой схемы? Очень надо!

#2 Бкгкмот Январь 27 2017

мост из Д242 способен отдать 10 А, замените на что нибудь более серьёзное.ну типа KBPC5002 ,KBPC5010

#3 root Январь 28 2017

Александр, спасибо за присланную печатную плату! Разместили ее в публикации.

#4 Антон Март 19 2017

Бкгкмот, д242 с радиаторами 15 ампер выдают и больше

#5 Игорь Апрель 20 2017

Спасибо за схему и печатку. Все собрал, но к сожалению не регулируется напряжение и при нагрузке на выходе просаживается с 25В до 6В. Подскажите пожалуйста в чем может быть причина.

#6 root Апрель 20 2017

Игорь, сперва узнайте какой ток потребляет ваша нагрузка при необходимом значении напряжения, возможно что значение тока превышает возможности собранного стабилизатора напряжения.
Внимательно осмотрите монтаж, проверьте соответствие номиналов всех резисторов на плате, прозвоните тестером транзистор и диод, сверьте монтаж со схемой.
Также обратите внимание на резисторы Rx - они должны быть одинакового сопротивления. В схеме указаны 0.3 Ома, но можно попробовать установить по 0,1-0,2 Ома. Корпуса всех микросхем (и транзистора) не должны быть соединены вместе!

#7 Алексей Апрель 28 2017

Ребят, подскажите начинающему, пожалуйста. Все вроде реально собрать, но что за элемент 741? Тот, что в центре схемы. Спасибо!

#8 root Апрель 29 2017

Микросхема 741 (LM741) - это одноканальный операционный усилитель.

#9 Almas Май 04 2017

Добрый день! сделал. работает.
прошу подскажите пожалуиста, как в этой схеме сделать регулируемое ограничение по току.

#10 Владимир Май 13 2017

Добрый день! В печатной плате есть ошибка, полдня убил пока разобрался. Пятая нога операционного усилителя должна висеть в воздухе. На печатке она соединена с шестой и в таком виде не работает... После выкусывания этой пятой ноги все заработало на ура!

#11 root Май 15 2017

Здравствуйте, Владимир! Благодарим за замечание, внесли исправление в печатную плату.

#12 Александр Июль 06 2017

Подскажите микросхема LM78H24K как подключить правильно или она такая как у LM 388.
Корпус то же (то-3).

#13 Олег Июль 14 2017

а можно сделать так:
Если у трансформатора 3 напряжения (+25,0,-25)
К + первого стабилизатора, 0 к - первого стабилизатора и +второго, -25 к - второго стабилизатора, а выход - первого соединить с +второго и поставить сдвоенный резистор регулировки, то можно добиться того, чтобы на выходе было 0..50В 10А(между +первого и - второго)?

#14 Сергей Июль 14 2017

Добрый вечер. Собрал схему на операционном усилителе UA741 и трёх LM338, все компоненты перед монтажом проверил мультиметром все номиналы совпадают со схемой. Но регулировка напряжения не работает и при нагрузке в 2А просаживается напряжение с 34В до 30В. Подскажите пожалуйста в чём может быть причина, и можно ли отладить схему после монтажа.

#15 Алексей Сентябрь 09 2017

Привет, коллеги!
Собрал эту схему для питания от источника постоянного напряжения 28 В. Поэтому конденсаторы не применял. На выходе полное входное напряжение и не регулируется. Сильно греется резистор R5 100 Ом. В чем проблема? Какой мощности должен быть R5?

#16 root Сентябрь 09 2017

Алексей, возможно вышел из строя или был установлен неисправным один из компонентов: транзистор, диод VD5 или микросхема. Внимательно сверьте весь монтаж с принципиальной схемой, осмотрите нет ли лишних соединений и замыканий.

#17 Alex Октябрь 28 2017

Доброго времени суток всем какой мощности нужны резисторы в этой схеме (0.5 ват хватит)??

#18 root Октябрь 28 2017

Мощность резисторов для приведенной схемы:

  • R1, R5, R6 - 0,5 Вт;
  • R3, R4 .. Rx - минимум 5 Вт;
  • R7, R8 - от 0,25 Вт и более.

#19 Юрий Октябрь 30 2017

Добрый день root. А можно ли собрать эту схему с трансформатором, на выходе которого 12 вольт? После диодной напряжение - 14,6 вольта. Мне нужно 12 вольт.

#20 root Октябрь 30 2017

Добрый день, Юрий. Напряжение на входе стабилизатора должно превышать напряжения на его выходе, у вас получается запас: 14.6-12 = 2,6В. При значительном токе нагрузки и не достаточно мощном трансформаторе напряжение на вторичной обмотке может опуститься ниже 12В.
Желательно поднять напряжение на вторичной обмотке - домотать к ней некоторое количество витков такого же провода чтобы получить хотя бы 14В, после выпрямителя и конденсаторов получится примерно 19В.
Также можно собрать схему стабилизатора на макетной панели и измерить насколько будет проседать напряжение на вторичной обмотке трансформатора при нужной нагрузке.
Для минимизации потерь, соединительные проводники линий питания и земли должны быть большого сечения!

#21 Андрей Январь 05 2018

Здраствуйте! Собрал схему,все детали по номиналу.Подскажите почему не регулируется напряжение на выходе?

#22 Александр Январь 06 2018

Здравствуйте! Я собрал выложенную Вами схему, но регулировки нет, проверил все связи и номиналы, всё соответствует схеме! Подскажите в чём проблема?

#23 root Январь 07 2018

Изготавливая печатную плату по технологии "лазерный принтер + утюг" нужно внимательно отнестись к распечатке трафарета в зеркальном отображении.

Если печатная плата изготовлена не верно, то запаять микросхему-ОУ с верным расположением ножек не получится, схема работать не будет. При верно изготовленной печатной плате ножка 2 операционного усилителя должна быть подключена к двум резисторам - R7 и R8 (по 4,7кОм).

Если схема не работает:

  1. Отключить от схемы выпрямитель, собранный на Т1, D1-D4, C1-С3. Проверить на исправность все диоды. Измерить напряжение на его выходе без нагрузки и с нагрузкой хотя-бы 1-2А, оно не должно сильно проседать, мощность трансформатора и диодов должны быть с достаточным запасом. Желательно чтобы значение напряжения на выходе достигало не более 35-37В;
  2. Прозвонить тестером на исправность VT1, D5 и все сопротивления;
  3. Проверить и при необходимости заменить ОУ;
  4. Проверить исправность конденсатора С4, попробовать его заменить.

Для проверки работоспособности ОУ можно собрать схему не сложного генератора:

Возможно попалась бракованная микросхема LM338. Для проверки можно собрать простую схему и проверить работает ли регулировка напряжения у каждой из микросхем-стабилизаторов:


Если вывод ADJ микросхемы подключить к минусу, то на выходе у нее должно быть напряжение примерно 1,2В.

Схема каскадного включения микросхем LM338 из даташита:

Она практически повторяет схему приведенную в этой публикации.

#24 Александр Январь 08 2018

Здравствуйте! Скажите, в классической схеме нет диода между 6й ногой мс и базой, может ли это влиять на управление?

#25 Евгений Февраль 16 2018

Здравствуйте! Скажите пожалуйста по ограничению по току, случайно нельзя Rx,R3,R4 объеденить в один переменный мощный проволочный, получиться или я чего то не понимаю?

#26 root Февраль 16 2018

Здравствуйте, Евгений. Заменить резисторы Rx,R3,R4 одним мощным нельзя, они нужны для выравнивания токов через каждую из микросхем.

#27 Genadi Март 08 2018

Скажите, пожалуйста,где добавить перем. резистор что бы можно было регулировать током на выходе?

Ребята добрый день. я у вас новичок и хочу спросить,скажите пож эта схема вообще рабочая или просто время коту под хвост??? мне очень нужен хороший и регулируемый мощный блок питания от минимума до максимума. скажите честно стоить собирать эту схему???

#29 Александр Компромистер Март 28 2018

Обычный трансформаторный блок питания с компенсационным стабилизатором.

#30 Александр Апрель 06 2018

Регулировка напряжения не работает. держится на 33 в хоть крути резистор переменный R1 хоть нет. Плату проверил, ничего не греется. Подскажите в чем дело?

#31 Толик Апрель 17 2018

Собрал схему вроде всё правильно резистор R6 поставил 150 Ом 2 Вт, подскажите пожалуйста почему он у меня сгорает:)?

#32 Толик Апрель 17 2018

С резисторами разобрался, если кто-нибудь вообще читает. Прошу очень надо не хочу новую схему искать.

#33 root Апрель 17 2018

Резистор R6 не может сгореть просто так, через него пошел большой ток - где-то совершена ошибка или какой-то из компонентов уже неисправен.

Может быть что вы не верно включили транзистор BD140 - в интернете встречались ошибочные цоколевки для этого компонента, всегда смотрите цоколевку в документации от производителей - даташитах!
На рисунке 4 показана верная цоколевка транзистора из даташита. Возможно что транзистор уже вышел из строя и требует замены - прозвоните его тестером.

Схема из рисунка 1 - аналогичная той, которая приведена производителем в даташите на микросхему LM338.

#34 root Апрель 17 2018

Собрали схему, что на рисунке 1 на макетнице. Вместо LM338 использовали ее более слабый по мощности аналог - LM317. Диод DS - 1N4002. Микросхема - 741CN в корпусе DIP-8. Резисторы R4, R3, Rx - были в наличии на 1Ом, использовали их для эксперимента.

Выходное напряжение отлично регулируется как под нагрузкой, так и в холостом режиме. Начальное напряжение на выходе - 4В, максимальное - напряжение питания минус несколько Вольт.

Схема абсолютно РАБОЧАЯ!

Если у вас схема не заработала - ищите ошибки в монтаже, на печатной плате, а также проверяйте на исправность все используемые электронные компоненты. В комментариях описано как проверить на исправность микросхемы и другие компоненты этой схемы.

#35 Сергей Май 14 2018

Здравствуйте. Собрал схему в холостую работала и регулировала напряжение от 4 до 31 вольта. Подключил нагрузку 2 секунды продержался и все. больше не работает. Не подскажите что может быть?

#36 Владимир Июнь 19 2018

Собрал схему. При емкости на выходе 4700 мкф. сгорает нижняя по схеме LM338. При уменьшении емкости до 22 мкф. включается и регулируется от 3,85 в до 31 в. При перегорани LM, у нее вход коротится с выходом, поэтому не регулируется напряжение на выходе. Под небольшой нагрузкой (стоит 4 шт. LM338) до 1,2А работает стабильно. НО при увеличении тока нагрузки снова перегорает LM. В чем может быть проблема??? Сжег уже 10 микросхем. Теоретически 4 шт. LM должны держать ток до 20А. А он не дотягивает и до 2А. Помогите!!!

#37 root Июнь 19 2018

Владимир, временно оставьте в схеме только одну LM338 (нижнюю по схеме), обязательно установите ее на радиатор. Сопротивление резистора R4 уменьшите до 0,1 Ом и в его разрыв включите амперметр на 10А. Проводите эксперименты с различными нагрузками, наблюдайте за током.

После можно подключить вторую и третью LM338. Сопротивления резисторов R3, R4...Rx должны быть одинаковыми и максимально точными. В разрыв каждого из резисторов можно включить по амперметру, это поможет узнать не берет ли на себя одна из микросхем больше нагрузки чем остальные.

В комментарии #23 приведена типовая схема включения LM338, с помощью этой схемы и амперметра можете проверить как хорошо выдерживают нагрузку каждая из купленных вами микросхем по отдельности.

#38 Владимир Июнь 19 2018

Сопротивления резисторов R3, R4...Rx думаю максимально точные, т.к изготовлены из нихромовой проволоки, зажатой между болтами М3 на расстоянии 3 см. Радиаторы стоят большие и с принудительным охлаждением. Еще вопрос: Есть ли защита от КЗ и перегрузки в данном БП? А вот вопрос с качеством LM338 пока остается спорным, т.к в наличии не осталось ни одной штуки. Теперь пока не куплю новые. И почему горели LM при емкости на выходе в 4700мкф?

#39 root Июнь 20 2018

В даташите на микросхему LM338 указано что на выходе у нее есть защита от короткого замыкания, а также имеется ограничение по пиковому току 8А(12А 0,5мс). Защита от перегрузки действует даже когда вывод Adjust никуда не подключен.

Емкости в 4700мкф на выходе стабилизатора пожалуй что многовато, от нее больше пользы будет на выходе выпрямителя. Внесли в схему и печатную плату изменения:

  • Конденсатор С1 - на 10000мкФ (на плате установлены два шт. по 4700мкф);
  • Конденсатор С6 - на 22мкФ, можно установить и больше;
  • Диод D6 служит для защиты микросхем от обратного напряжения;
  • Сопротивления R3, R4...Rx уменьшены до 0,1 Ом. В даташите и во многих подобных схемах с несколькими LM338 рекомендуют именно такое сопротивление.

Отсутствие защитного диода и наличие на выходе большой емкости при некоторых обстоятельствах могли стать причиной повреждения микросхем, но это лишь предположение. Не исключено что попалась бракованная или поддельная партия микросхем, особенно если они в корпусе TO-220.

#40 Андрей Июнь 24 2018

А может кто-нибудь подсказать, как сделать эту схему на 40-50 вольт?

#41 root Июнь 26 2018

Максимально допустимое напряжение на входе микросхемы LM338 - 40В (данные из даташита).

#42 Андрей Июнь 26 2018

А в этой схеме можно управлять током если добавить переменный резистор, и куда, и на сколько?

#43 root Июнь 26 2018

Андрей, просто добавив переменный резистор в эту схему превратить ее в стабилизатор тока, скорее всего что не получится. Максимальный ток через стабилизатор можно попробовать ограничить изменением сопротивлений резисторов R3, R4...Rx.

Схемы стабилизаторов тока на LM338 из даташита:


В схеме с регулировкой тока потребуется дополнительный источник питания с напряжением -5В..-10В относительно земли.

#44 Андрей Июнь 30 2018

Спасибо root, просто я в электронике не силен, а блок питания очень хочется!!! Ну чтож, без тока так без тока.(

#45 Владимир Июль 04 2018

В общем запустил этот БП. По порядку: Резисторы уменьшил до 0,1 ом (покупные), LM338 приобрел в магазине, установил 5 шт.(из Китая, видимо идет подделка), прежде, чем их установить каждую проверил на работоспособность с нагрузкой до 3 А. Каждая на отдельном радиаторе с общим принудительным охлаждением. На входе 2х4700 мкф, на выходе 22 мкф. Нагрузил до 6 А. Микросхемы почти не греются. Работает стабильно. Диодный мост GBJ2510 на радиаторе не греется совсем. Желательно R1 установить многооборотистый, для более точной регулировки. На вых. 3,85-30 вольт. Вопрос: для чего в этой схеме операционный усилитель? Вроде, как и без него можно обойтись? Что он делает?

#46 Алексей Август 30 2018

#45 Владимир Вопрос: для чего в этой схеме операционный усилитель? Вроде, как и без него можно обойтись? Что он делает?

Ответ:более точно и быстро компенсирует скачки напряжения на выходе стабилизатора, без него, возможны просадки при подключении большой нагрузки, так так у транзистора не такая крутая характеристика.

#47 Виталий Сентябрь 22 2018

Здравствуйте.
Подскажите пожалуйста, подойдет ли такой трансформатор?
У меня трансформатор осо-0,25-У3. Он на 250 ватт, на выходе 36 вольт.
Сколько ампер не написано, но я посчитал так: 250 разделил на 36, получается примерно 7 ампер, если применим такой подсчет..

#48 root Сентябрь 22 2018

Здравствуйте. Маркировка сетевого понижающего трансформатора ОСО-0,25 означает:

  • О - однофазный;
  • С - сухой;
  • О - предназначен для питания ламп местного освещения;
  • 0,25 - мощность в кВт, или 250Вт.

Встречаются с различными напряжениями вторичной обмотки - 12; 24; 36; 42; 110 (В).
Примерный расчет тока вами выполнен верно, сечение провода вторичной обмотки трансформатора (2,5мм) рассчитано примерно на 7А тока.

После выпрямления диодным мостом D1-D4, повышения и сглаживания электролитическим конденсатором C2 напряжение достигнет значения 36В * 1,4 = 50,4В.

В даташите на микросхему LM338 указано что разница между входным и выходным напряжениями должна быть в пределах -3..+40В (Vin-Vout <40V).
50В-3В=47В!

Исходя их данного ограничения, максимальное напряжение на входе микросхемы не должно превышать +40В. В вашем случае можно отмотать часть витков вторичной обмотки чтобы получить на ее выходе напряжение 25-27V.

#49 Олег Октябрь 20 2018

Добрый день! Собрал данную схему на одной 338, на выходе с диодного моста порядка 38В, но на выходе БП больше 16В получить не удается, в чем может быть загвоздка?

#50 Николай Ноябрь 02 2018

Здравствуйте уважаемый root,скажите пожалуйста, а можно ли вместо лм 741поставить кр1401уд2а??.я просто понять не могу на что смотреть в даташите. С уважением Николай.

#51 root Ноябрь 02 2018

Здравствуйте.

КР1401УД2 (аналог LM324) может питаться от напряжений в диапазоне 3…32В/±1,5…16В. Если на сглаживающем конденсаторе после выпрямителя будет примерно 28В (учет с запасом скачков напряжения в сети) то эту микросхему можно попробовать использовать в этой схеме, будет задействован только один из четырех ОУ внутри корпуса, выходное напряжение стабилизатора будет регулироваться от 3В до 28В.

Микросхема LM741 в этой схеме более предпочтительна потому что у нее в корпусе один ОУ и достаточно высокий порог питающего напряжения - 44В/±22В для LM741, LM741A и 36В/±18В для LM741C. Это позволяет получить на выходе стабилизатора максимальное напряжение до 35-40В, которое уже ограничено параметрами микросхемы LM338.

#52 Николай Ноябрь 02 2018

Спасибо большое за развёрнутый ответ! С уважением Николай.

#53 Михаил Декабрь 29 2018

Всем привет! У меня такой вопрос... Можно ли в данной схеме обойтись одной микросхемой LM338 или LM317, но умощнить с помощью нескольких транзисторов, включенных параллельно стабилизатору, для получения тех же токов, что и при использовании нескольких параллельно включенных стабилизаторов?

#54 Михаил Январь 10 2019

Приглянулось тем, как раз, что в схеме используется ОУ для улучшения выходных параметров стабилизатора. И я подумал, а что если применить вместо нескольких стабилизаторов один, но умощнить его транзисторами, так сказать, скрестить ужа с ежом:)

Попробовал смоделировать процессы в Micro Cap, происходящие в этой гибридной схеме и получилось весьма интересно:)
Если рассчитывать (из схемы по ссылке), что через каждый транзистор должен течь ток 3А и если используем 8 транзисторов, то можем получить ток нагрузки 24А.

Но даже если мы нагрузим и 30А, то пульсации, судя по графикам будут всего тысячные доли вольта! Напряжение на выходе транса лучше брать с запасом, чтобы исключить просадки под нагрузкой.

В общем, на ваш суд выкладываю этот "гибрид". Сильно только помидорами не закидывайте и если где не прав, поправьте;)

#55 Георгий Февраль 05 2019

Здравствуйте.
Есть два одинаковых трансформатора - HP80-01, (80VA.6.67А)на вторичной обмотке по 12в.
Есть идея включить вторичные обмотки через переключатель последовательно чтоб получить 24в и паралельно если нужно напряжение до 12 вольт. Таким образом увеличить мощность и уменьшить теплопотери если например нужно 5-12 в. Реально ли это?

#56 root Февраль 06 2019

Георгий, можно попробовать. Но включать параллельно вторичные обмотки сразу с трансформаторов не рекомендую - разница в выходном напряжении одной из обмоток может повлечь потери мощности и нагрев этого трансформатора.

Поэтому, напряжение со вторичных обмоток лучше снимать уже выпрямленное, а дальше уже с ним выполнять запараллеливание или же включение последовательно.

Здесь можно применить два мощных диодных моста и мощный переключатель с двумя группами контактов, нарисовали примерную схему такого решения:

#57 Bogdan Март 09 2019

Здравствуйте! Хочу спросить. Зачем в этой схеме операционный усилитель и транзистор BD140??? Можно ж обойтись одним переменным резистором для управления микросхемами. Управление все равно идет на них по одной шине. Подключить резисторы для выравнивания тока и защитный диод, кое какие кондеры - согласен! Но зачем все остальное я не могу понять! Пожалуйста объясните.

#58 root Март 09 2019

Здравствуйте! Ответ на ваш вопрос по ОУ уже есть в комментарии #46. Транзистор здесь является вспомогательным элементом для схемы компенсации на основе ОУ.

#59 Bogdan Март 12 2019

Скажите пожалуйста что нужно изменить в схеме что бы выходное напряжение было не от 4 вольт а от 1.2 ?
В даташите написано что выходное напряжение может быть от 1,2 до 32 В.
Заранее спасибо!

#60 root Март 12 2019

Питание ОУ в этой схеме осуществляется от выходного напряжения стабилизатора, микросхема 741 не рассчитана на работу в диапазоне питающих напряжений от 1В до 35В. Как эксперимент, попробуйте подать питание на ОУ от отдельного источника постоянного напряжения 12В. Ножка 4 должна быть подключена к минусу схемы, ножку 7 отпаять и через нее подать внешнее питание на ОУ.

#61 Андрей Апрель 21 2019

Если трансформатор выдает 16 вольт, какое максимальное напряжение можно получить на выходе стабилизатора?

#62 Seawar Апрель 21 2019

#63 Владимир Апрель 27 2019

Возможно ли заменить LM741 в стабилизаторе на сдвоенный LM358 используя один операционник.

#64 root Апрель 27 2019

Владимир, возможно, но входное напряжение нужно ограничить до 30 Вольт, иначе микросхема LM358 может выйти из строя. В даташите на ОУ LM358 указан диапазон рабочих напряжений при однополярном питании - от 3В до 32В.

#65 Владимир Апрель 28 2019

Спасибо за ответ. Но если запитать от отдельного источника питания или через стабилизатор напряжения возможно? То что LM741 найти проблематично а, с Али ждать долго а LM358 имеется достаточно. BD140 возможно ли заменить на КТ814 или КТ816 которых у меня тоже в изобилии? И возможно ли на второй части LM358 сделать плавную регулировку тока если возможно, то как? Заранее благодарен.

#66 root Апрель 28 2019

Питание ОУ от внешнего стабилизатора в вашем случае - сомнительное решение, но можно попробовать. Наиболее близким аналогом транзистора BD140 из отечественных является КТ814Г, замена возможна. Второй ОУ микросхемы можно применить для сборки узла стабилизации тока, но временные затраты на разработку и отладку могут не окупиться. Если нужна стабилизация тока, то возможно стоит поискать готовые схемы, где все уже продумано и оттестировано.

#67 Васили Май 05 2019

Возможна ли замена силового трансформатора на импульсный на SG3525?

#68 root Май 06 2019

Возможна, если переменное напряжение, подаваемое на вход схемы до диодного моста, не будет превышать 18-25В и сила тока будет достаточной для ваших целей.

Собираем лабораторный БП 0-30В 3(5)А.

В этой статье мы представляем вам схему регулируемого от нуля до 30 вольт блока питания для домашней лаборатории радиолюбителя, способного отдавать в нагрузку ток 3 ампера и больше. Рассмотрим принципиальную схему устройства:

В схеме блока питания применяется микросхема TLC2272 (операционный усилитель), которая получает питание от однополярного источника, собранного на элементах VT1, VD2. По схеме этот узел выдает напряжение 6,5 вольт, но можно применить и 5-ти вольтовое питание, при этом номинал резистора R9 необходимо будет уменьшить примерно до 1,6 кОм, на схеме он помечен звездочкой, это означает, что путем его подбора необходимо будет задать опорное напряжение, которое должно быть равно 2,5 вольта.

Резистор R11 – определяет максимальный уровень напряжения диапазона регулирования.

Переменным резистором R14 производится плавная регулировка выходного напряжения блока питания, а резистором R7 настраивается ограничение по току (0…3 Ампера). В принципе, параметры ограничения можно расширить, и сделать регулировку, например, от 0 до 5А. Для этого необходимо будет пересчитать номиналы резисторов делителя R6 и R8.

Светодиод VD4 применен как индикатор наличия перегрузки или короткого замыкания.

Печатная плата блока питания:

Вид на печатную плату со стороны установленных элементов:

Печатная плата рассчитана на установку панельки для микросхемы DA1. Это пригодится при налаживании блока питания после его сборки.

Первое включение и как настроить блок питания:

Микросхема DA1 в панельку не вставлена, резистор R14 в нижнем по схеме положении.
Включаем питание, меряем напряжение на емкости С1, оно должно быть в пределах 35…38 вольт.
Резистором R2 (серия СП5) устанавливаем на 8-ом контакте панельки микросхемы DA1 напряжение 6,5 вольта.
Выключаем питание, вставляем DA1 в панельку, включаем питание, и еще раз замеряем напряжение питания микросхемы. Если оно отлично от 6,5В, производим подстройку.
Устанавливаем опорное U = 2,5 вольта на верхнем по схеме выводе потенциометра R14 (как уже написано выше, он находится в нижнем по схеме положении), то есть подбираем номинал R9.
Выкручиваем потенциометр R14 в верхнее по схеме положение, производим настройку верхнего предела регулирования напряжения путем подстройки резистора R11 (серия СП5), устанавливаем 30 вольт.
Резистор R16 на схеме обозначен пунктирной линией. Если его не ставить, U выходное минимальное будет равно 3,3 мВ, в принципе это практически нуль. При установке R16 номиналом 1,3 МОм минимальное напряжение должно составлять 0,3 мВ. Печатная плата предусматривает установку этого резистора.
Последним этапом настройки является проверка узла защиты, реализованной на элементе DA1.2. При необходимости подберите номиналы резисторов R6 и R8.

Возможные изменения схемы.

Как уже было написано выше, вместо узла, формирующего напряжение питания микросхемы DA1 величиной 6,5 В, можно применить 5-ти вольтовый источник. Его можно собрать на микросхеме интегрального стабилизатора 7805 по следующей схеме (при этом не забудьте подобрать R9):

Еще можно сделать преобразование узла, выдающего опорное напряжение 2,5 вольта, то есть вместо VD3 (TL431) поставить TLE2425, у которой напряжение на входе может быть от 4 до 40 вольт, а на выходе у нее будут стабильные 2,5 вольта. Схема на TLE2425 ниже:

Вместо операционного усилителя TLC2272 можно поставить TLC2262 без каких-либо изменений схемы.
Отечественным аналогом микросхемы TL431 является 142ЕН19.
Вместо 2N2222A можно поставить ВС109, BSS26, ECG123A, 91L14, 2114 или похожие по характеристикам.

Блок питания 1-30V на LM317 + 3 х TIP41C
или 3 х 2SC5200.

В статье рассмотрена схема простого регулируемого источника питания, реализованная на микросхеме-стабилизаторе LM317, которая управляет мощными, включенными в параллель тремя транзисторами структуры NPN. Пределы регулировки выходного напряжения 1,2...30 Вольт с током нагрузки до 10 Ампер. В качестве мощных выходников применены транзисторы TIP41C в корпусе TO220, ток коллектора у них 6 Ампер, рассеиваемая мощность 65 Ватт. Принципиальная схема блока питания показана ниже:

В качестве выходников так же можно применить TIP132C, корпус TO220, ток коллектора у этих транзисторов 8 Ампер, рассеиваемая мощность 70 Ватт согласно datasheet.

Расположение выводов у транзисторов TIP132C, TIP41C следующее:

Расположение выводов у регулируемого стабилизатора LM317:

Транзисторы в корпусе TO220 впаиваются непосредственно в печатную плату и крепятся к одному общему радиатору с применением слюды, термопасты и изолирующих втулок. Но можно и применить транзисторы в корпусе TO-3, из импортных подойдут, например, 2N3055, ток коллектора которых до 15 Ампер, рассеиваемая мощность 115 Ватт, или транзисторы отечественного производства КТ819ГМ, они 15 Амперные с рассеиваемой мощностью 100 Ватт. В этом случае выводы транзисторов соединяются с платой проводами.

Как вариант, можно рассмотреть применение импортных 15-ти амперных транзисторов TOSHIBA 2SC5200 с рассеиваемой мощностью 150 Ватт. Именно этот транзистор я использовал при переделке KIT-набора блока питания, купленного на Алиэкспресс.

На принципиальной схеме клеммы PAD1 и PAD2 предназначены для подключения амперметра, на клеммы X1-1 (+) и X1-2 (-) подается входное напряжение с выпрямителя (диодного моста), X2-1 (-) и X2-2 (+) это выходные клеммы блока питания, к клеммнику JP1 подключается вольтметр.

Первый вариант печатной платы рассчитан на установку силовых транзисторов в корпусе TO220, вид LAY6 формата следующий:

Фото-вид платы LAY6 формата:

Второй вариант печатной платы под установку транзисторов типа 2SC5200, вид LAY6 формата ниже:

Фото-вид второго варианта печатной платы блока питания:

Третий вариант печатной платы такой же, но без диодной сборки, найдете в архиве с остальными материалами.

Список элементов схемы регулируемого блока питания на LM317:

Резисторы:

R1 – потенциометр 5K – 1 шт.
R2 – 240R 0,25W – 1 шт.
R3, R4, R5 – керамические резисторы 5W 0R1 – 3 шт.
R6 – 2K2 0,25W – 1 шт.

Конденсаторы:

С1, С2 – 4700...6800mF/50V – 2 шт.
С3 – 1000...2200mF/50V – 1 шт.
С4 – 150...220mF/50V – 1 шт.
С5, С6, С7 – 0,1mF = 100n – 3 шт.

Диоды:

D1 – 1N5400 – 1 шт.
D1 – 1N4004 – 1 шт.
LED1 – светодиод – 1 шт.
Диодная сборка – у меня не было в наличии сборок на чуть меньший ток, поэтому плата нарисована под использование KBPC5010 (50 Ампер) – 1 шт.

Транзисторы, микросхемы:

IC1 – LM317MB – 1 шт.
Q1, Q2, Q3 – TIP132C, TIP41C, КТ819ГМ, 2N3055, 2SC5200 – 3 шт.

Остальное:

Разъемы 2 Pin с болтовым зажимом (вход, выход, амперметр) – 3 шт.
Разъем 2 Pin 2,54mm (светодиод, регулирующий переменник) – 2 шт.
В принципе разъемы можно и не ставить.
Внушительный радиатор для выходников – 1 шт.
Трансформатор, вторичка на 22...24 Вольта переменки, способная дежать ток порядка 10...12 Ампер.

Размер файла архива с материалами по блоку питания на LM317 10A – 0,6 Mb.


© 2024
bmwday.ru - Ваз, Lada - Автомобильный портал