25.07.2023

Arduino управление яркостью светодиода резистором. Регулирование яркости светодиода. Плавное изменение цвета


Теперь же разберемся с многоцветным светодиодом, который часто называют сокращенно: RGB-светодиод . RGB — это аббревиатура, которая расшифровывается как: Red — красный, Green — зеленый, Blue — синий. То есть внутри этого устройства размещается сразу три отдельных светодиода. В зависимости от типа, RGB-светодиод может иметь общий катод или общий анод.

1. Смешение цветов

Чем RGB-светодиод, лучше трех обычных? Всё дело в свойстве нашего зрения смешивать свет от разных источников, размещенных близко друг к другу. Например, если мы поставим рядом синий и красный светодиоды, то на расстоянии несколько метров их свечение сольется, и глаз увидит одну фиолетовую точку. А если добавим еще и зеленый, то точка покажется нам белой. Именно так работают мониторы компьютеров, телевизоры и уличные экраны. Матрица телевизора состоит из отдельно стоящих точек разных цветов. Если взять лупу и посмотреть через нее на включенный монитор, то эти точки можно легко увидеть. А вот на уличном экране точки размещаются не очень плотно, так что их можно различить невооруженным глазом. Но с расстояния несколько десятков метров эти точки неразличимы. Получается, что чем плотнее друг к другу стоят разноцветные точки, тем меньшее расстояние требуется глазу чтобы смешивать эти цвета. Отсюда вывод: в отличие от трех отдельностоящих светодиодов, смешение цветов RGB-светодиода заметно уже на расстоянии 30-70 см. Кстати, еще лучше себя показывает RGB-светодиод с матовой линзой.

2. Подключение RGB-светодиода к Ардуино

Поскольку многоцветный светодиод состоит из трех обычных, мы будем подключать их отдельно. Каждый светодиод соединяется со своим выводом и имеет свой отдельный резистор. В уроке мы используем RGB-светодиод с общим катодом, так что провод к земле будет только один. Принципиальная схема
Внешний вид макета

3. Программа для управления RGB-светодиодом

Составим простую программу, которая будет по очереди зажигать каждый из трех цветов. const byte rPin = 3; const byte gPin = 5; const byte bPin = 6; void setup() { pinMode(rPin, OUTPUT); pinMode(gPin, OUTPUT); pinMode(bPin, OUTPUT); } void loop() { // гасим синий, зажигаем красный digitalWrite(bPin, LOW); digitalWrite(rPin, HIGH); delay(500); // гасим красный, зажигаем зеленый digitalWrite(rPin, LOW); digitalWrite(gPin, HIGH); delay(500); // гасим зеленый, зажигаем синий digitalWrite(gPin, LOW); digitalWrite(bPin, HIGH); delay(500); } Загружаем программу на Ардуино и наблюдаем результат. Your browser does not support the video tag. Немного оптимизируем программу: вместо переменных rPin, gPin и bPin применим массив. Это нам поможет в следующих заданиях. const byte rgbPins = {3,5,6}; void setup() { for(byte i=0; i<3; i++) pinMode(rgbPins[i], OUTPUT); } void loop() { digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); }

4. Семь цветов радуги

Теперь попробуем зажигать одновременно по два цвета. Запрограммируем такую последовательность цветов:
  • красный
  • красный + зеленый = желтый
  • зеленый
  • зеленый + синий = голубой
  • синий
  • синий + красный = фиолетовый
Оранжевый цвет мы для упрощения опустили. Так что, получилось шесть цветов радуги 🙂 const byte rgbPins = {3,5,6}; const byte rainbow = { {1,0,0}, // красный {1,1,0}, // жёлтый {0,1,0}, // зелёный {0,1,1}, // голубой {0,0,1}, // синий {1,0,1}, // фиолетовый }; void setup() { for(byte i=0; i<3; i++) pinMode(rgbPins[i], OUTPUT); } void loop() { // перебираем все шесть цветов for(int i=0; i<6; i++){ // перебираем три компоненты каждого из шести цветов for(int k=0; k<3; k++){ digitalWrite(rgbPins[k], rainbow[i][k]); } delay(1000); } } В результате работы программы получается: Your browser does not support the video tag.

5. Плавное изменение цвета

Мы не зря подключили RGB-светодиод к выводам 3, 5 и 6. Как известно, эти выводы позволяют генерировать ШИМ сигнал разной скважности. Другими словами, мы можем не просто включать или выключать светодиод, а управлять уровнем напряжения на нем. Делается это с помощью функции analogWrite . Сделаем так, что наш светодиод будет переходить между цветами радуги не скачкообразно, а плавно. const byte rgbPins = {3,5,6}; int dim = 1; void setup() { for(byte i=0; i<3; i++){ pinMode(rgbPins[i], OUTPUT); } // начальное состояние - горит красный цвет analogWrite(rgbPins, 255); analogWrite(rgbPins, 0); analogWrite(rgbPins, 0); } void loop() { // гасим красный, параллельно разжигаем зеленый for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } // гасим зеленый, параллельно разжигаем синий for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } // гасим синий, параллельно разжигаем красный for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } } Переменная dim определяет яркость свечения. При dim = 1 имеем максимальную яркость. Загружаем программу на Ардуино. Your browser does not support the video tag.

Задания

  1. Индикатор температуры. Добавим в схему термистор и подключим его к аналоговому входу. Светодиод должен менять свой цвет в зависимости от температуры термистора. Чем ниже температура, тем более синий цвет, а чем выше, тем более красный.
  2. RGB лампа с регулятором. Добавим в схему три переменных резистора и подключим их к аналоговым входам. Программа должна непрерывно считывать значения резисторов и менять цвет соответствующей компоненты RGB-светодиода.

Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.

Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.

Принцип управления нагрузкой через Ардуино

Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.

Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.

Синтаксис команд

Цифровой вывод:

pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.

Аналоговый вывод:

analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.

Способы управления светодиодами через Ардуино

Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.

Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.

Виды транзисторных ключей

  • Биполярный;
  • Полевой;
  • Составной (сборка Дарлингтона).
Способы подключения нагрузки
Через биполярный транзистор Через полевой транзистор Через коммутатор напряжения

При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.

Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.

Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.

Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.

Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.

Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:

Принцип работы транзистора для плавного управления светодиодной лентой

Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.

Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.

Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.

Схема подключения LED ленты к ардуино:

Управление RGB лентой с помощью Andurino

Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.

Схема подключения к Arduino RGB светодиода:

Аналогично построено и управление RGB лентой Arduino:

Аrduino RGB контроллер лучше собирать на полевых транзисторах.

Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.

Скетч управления яркостью светодиодной ленты Arduino

int led = 120; устанавливаем средний уровень яркости

void setup() {
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);

pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
}
void loop(){

button1 = digitalRead(2);

button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
{
led = led + 5;

analogWrite(4, led);
}
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
{
led = led — 5;

analogWrite(4, led);
}

При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.

Модули управления Ардуино

Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.

ИК-управление

Модуль позволяет запрограммировать до 20 команд.

Радиус сигнала около 8м.

Цена комплекта 6 у.е.

По радиоканалу

Четырёхканальный блок с радиусом действия до 100м

Цена комплекта 8 у.е.

Позволяет включать освещение еще при приближении к квартире.

Бесконтактное

Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.

Радиус действия до 5м.

Цена модуля 0,3 у.е.

Список деталей для эксперимента

Для дополнительного задания

    еще 1 светодиод

    еще 1 резистор номиналом 220 Ом

    еще 2 провода

Принципиальная схема

Схема на макетке

Обратите внимание

    Мы подключили «землю» светодиода и переменного резистора (потенциометра) к длинной рельсе «-» макетной платы, и уже ее соединили с входом GND микроконтроллера. Таким образом мы использовали меньше входов и от макетки к контроллеру тянется меньше проводов.

    Подписи «+» и «-» на макетке не обязывают вас использовать их строго для питания, просто чаще всего они используются именно так и маркировка нам помогает

    Не важно, какая из крайних ножек потенциометра будет подключена к 5 В, а какая к GND, поменяется только направление, в котором нужно крутить ручку для увеличения напряжения. Запомните, что сигнал мы считываем со средней ножки

    Для считывания аналогового сигнала, принимающего широкий спектр значений, а не просто 0 или 1, как цифровой, подходят только порты, помеченные на плате как «ANALOG IN» и пронумерованные с префиксом A . Для Arduino Uno - это A0-A5.

Скетч

p030_pot_light.ino // даём разумные имена для пинов со светодиодом // и потенциометром (англ potentiometer или просто «pot») #define LED_PIN 9 #define POT_PIN A0 void setup() { // пин со светодиодом - выход, как и раньше... pinMode(LED_PIN, OUTPUT) ; // ...а вот пин с потенциометром должен быть входом // (англ. «input»): мы хотим считывать напряжение, // выдаваемое им pinMode(POT_PIN, INPUT) ; } void loop() { // заявляем, что далее мы будем использовать 2 переменные с // именами rotation и brightness, и что хранить в них будем // целые числа (англ. «integer», сокращённо просто «int») int rotation, brightness; // считываем в rotation напряжение с потенциометра: // микроконтроллер выдаст число от 0 до 1023 // пропорциональное углу поворота ручки rotation = analogRead(POT_PIN) ; // в brightness записываем полученное ранее значение rotation // делённое на 4. Поскольку в переменных мы пожелали хранить // целые значения, дробная часть от деления будет отброшена. // В итоге мы получим целое число от 0 до 255 brightness = rotation / 4 ; // выдаём результат на светодиод analogWrite(LED_PIN, brightness) ; }

Пояснения к коду

    С помощью директивы #define мы сказали компилятору заменять идентификатор POT_PIN на A0 - номер аналогового входа. Вы можете встретить код, где обращение к аналоговому порту будет по номеру без индекса A . Такой код будет работать, но во избежание путаницы с цифровыми портами используйте индекс.

    Переменным принято давать названия, начинающиеся со строчной буквы.

    Чтобы использовать переменную, необходимо ее объявить, что мы и делаем инструкцией:

int rotation, brightness;

    Переменные одного типа можно объявить в одной инструкции, перечислив их через запятую, что мы и сделали

    Функция analogRead(pinA) возвращает целочисленное значение в диапазоне от 0 до 1023, пропорциональное напряжению, поданному на аналоговый вход, номер которого мы передаем функции в качестве параметра pinA

    Обратите внимание, как мы получили значение, возвращенное функцией analogRead() : мы просто поместили его в переменную rotation с помощью оператора присваивания = , который записывает то, что находится справа от него в ту переменную, которая стоит слева

Вопросы для проверки себя

    Можем ли мы при сборке схемы подключить светодиод и потенциометр напрямую к разным входам GND микроконтроллера?

    В какую сторону нужно крутить переменный резистор для увеличения яркости светодиода?

    Что будет, если стереть из программы строчку pinMode(LED_PIN, OUTPUT) ? строчку pinMode(POT_PIN, INPUT) ?

    Зачем мы делим значение, полученное с аналогового входа перед тем, как задать яркость светодиода? что будет, если этого не сделать?

На предыдущих уроках мы познакомились с простейшими схемами — сборкой и . Сегодня собираем модель с потенциометром (переменным резистором) и светодиодом. Такая модель может использоваться для управления роботом.

Потенциометр — это переменный резистор с регулируемым сопротивлением. Потенциометры используются в робототехнике как регуляторы различных параметров — громкости звука, мощности, напряжения и т.п. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода. Это также одна из базовых схем.

Видео-инструкция сборки модели:

Для сборки модели нам потребуется:

  • плата Arduino (или аналоги);
  • Breadboard;
  • 6 проводов и/или перемычек “папа-папа”;
  • светодиод;
  • потенциометр (переменный резистор);
  • резистор на 220 Ом;
  • среда Arduino IDE, которую можно скачать с сайта Arduino .

Что понадобится для подключения потенциометра и светодиода на Arduino?

Схема подключения модели Arduino с потенциометром и светодиодом:

Схема подключения модели Arduino с потенциометром и светодиодом

Для работы этой модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

// даём имена пинов со светодиодом
// и потенциометром
#define led 9
#define pot A0
void setup()
{
// пин со светодиодом - выход
pinMode(led, OUTPUT);
// пин с потенциометром - вход
pinMode(pot, INPUT);
}
void loop()
{
// объявляем переменную x
int x;
// считываем напряжение с потенциометра:
// будет получено число от 0 до 1023
// делим его на 4, получится число в диапозоне
// 0-255 (дробная часть будет отброшена)
x = analogRead(pot) / 4;
// выдаём результат на светодиод
analogWrite(led, x);
}

Так выглядит собранная модель Arduino потенциометра со светодиодом:

Модель Arduino с потенциометром и светодиодом в собранном виде

На этом третий урок “Arduino для начинающих” закончен. Продолжение следует!

Посты по урокам:

  1. Первый урок: .
  2. Второй урок: .
  3. Третий урок: .
  4. Четвертый урок: .
  5. Пятый урок: .
  6. Шестой урок: .
  7. Седьмой урок: .
  8. Восьмой урок: .
  9. Девятый урок:

© 2024
bmwday.ru - Ваз, Lada - Автомобильный портал